
1

OpenHAB3 & NSPanel

 +

Installation and configuration guide

Alf Pfeiffer, 2022-03-27

2

Table of content
1. Overview ... 3

Disclaimer .. 3

Acknowledgements ... 3

5. Post configuration of Tasmota on NSPanel ... 4

Post configuration steps after flashing.. 4

6. Base setup of NSPanel-to-OpenHAB communication ... 6

Links and references .. 6

Preparations .. 6

Download an OpenHAB adopted “nxpanel.be” .. 6

Installation and configuration ... 6

Connecting NSPanel with OpenHAB.. 8

Enable logging! .. 8

Configure MQTT in NSPanel .. 9

Configuring MQTT in OpenHAB ... 9

How it works .. 11

Update values on first screen .. 13

Mikes Groovy script ... 13

7. Custom panel configuration ... 18

3

1. Overview
This documentation describes the installation steps for how to flash a Sonoff NSPanel with Tasmota

firmware and then to connect it to a OpenHAB3 system. The setup also assumes you would like to

get weather information on the start panel.

I’ve read (and reread) all the posts on this topic on the OpenHAB forum and my finding is that most

people – just like me – get stuck on 1. Get NSPanel to ”talk” to OpenHAB and 2. Configuring the

panels (screens) in NSPanel. For quick answer on 1, check picture in chapter 6.

Components used for the setup:

• A Windows PC to do the work on

• Raspberry Pi (minimum 3, recommended 4)

• A USB Serial Adapter

• Some cables to connect the USB serial adapter to the circuit board of the NSPanel.

• Sonoff NSPanel EU

• OpenHABian (v1.7.2), components needed:

o Binding: MQTT Binding

o Binding: OpenWeatherMap Binding

o Add-on: JSONpath Transformation

o Add-on: RegEx Transformation

o Automation: Groovy Scripting

• Mosquitto MQTT broker (included in OpenHABian)

• Openweathermap cloud service

Disclaimer
Use this documentation at your own risk! The author assumes no responsibility of any mishaps

resulting in your use of this documentation.

Acknowledgements
m-home (Mike) – For his initiative and appreciated efforts to bring NSPanel to OpenHAB

Blakadder – For creating a Tasmota firmware for NSPanel

Lewis Barclay – Especially this video which is the source for my flashing documentation (I actually

suggest you use this for the flashing part and use my documentation only as a reference).

https://community.openhab.org/u/m-home
https://blakadder.com/
https://templates.blakadder.com/sonoff_NSPanel.html
https://everythingsmarthome.co.uk/author/lewis/
https://www.youtube.com/watch?v=sCrdiCzxMOQ

4

5. Post configuration of Tasmota on NSPanel
Post configuration of Tasmota on NSPanel after flashing to make it ready for integration with

OpenHAB.

Post configuration steps after flashing.
Steps are:

1. Unplug the 3.3V power (disconnect USB from serial adapter)

2. On NSPanel: Plug 5V + GND on two bottom middle pins:

3. On USB Serial Adapter: Plug 5V + GND

4. Power your USB serial adapter by plugging it in on your PC

5. A WiFi hotspot should now appear called e.g., “Tasmota7DD7FC-6140” (or something similar)

6. Connect to the WiFi hotspot (used iPhone for this, didn’t detect it on my PC..)

Cabling for post
configuration

USB Serial Adapter

NSPanel Circuit board

5

7. Put in WiFi SSID and password for you home WiFi and press “Save”:

 and then this is shown:

8. The NSPanel will now connect to your WiFi

9. Browse to the IP that is displayed (192.168.3.121):

10. Do some initial configuration:

a. Select: Configuration

b. Select: Configure Other

c. Replace Template string with:
{"NAME":"NSPanel","GPIO":[0,0,0,0,3872,0,0,0,0,0,32,0,0,0,0,225,0,48

0,224,1,0,0,0,33,0,0,0,0,0,0,0,0,0,0,4736,0],"FLAG":0,"BASE":1,"CMND

":"ADCParam 2,11200,10000,3950 | Sleep 0 | BuzzerPWM 1"}
d. Select: “Save” (Tasmota now reboots)

e. The screen should now come alive!

2. One final change

a. Select: Configuration

b. Select: Configure Module

c. Select: ESP32-DevKit (0):

d. Select: “Save” (Tasmota now reboots)

At this stage you now have a running NSPanel that is ready to be integrated to OpenHAB .

If you used the instruction from the Tasmota, this is also the cut-off point where you use Mikes

“nxpanel.be” file instead of installing the “nspanel.be” file described in the Tasmota instruction.

https://templates.blakadder.com/sonoff_NSPanel.html

6

6. Base setup of NSPanel-to-OpenHAB communication
This final step describes how the panel interface is adopted to work with OpenHAB. This is where the

work from Mike comes into play. He has created a new “visual layout” of the panel (screen) which

also supports several different panel types. The big advantage is that you with this change will be

able to better adapt and extend the NSPanel to your home automation needs. I do not really

understand how this actually “works”, just appreciate that it does and fits my purpose.

After the steps in this chapter, you will have:

• A new panel layout installed (Mikes)

• Base communication between NSPanel and OpenHAB setup established

• Customized the primary panel with on your OpenHAB items (temperature and weather)

Links and references
• Server/location hosting latest nxpanel.tft definition: Index of /nxpanel (proto.systems)

• Location of “nxpanel.be”, the panel definition file adapted for OpenHAB: ns-flash/berry at

master · peepshow-21/ns-flash · GitHub

Preparations
Again, some preparations

Download an OpenHAB adopted “nxpanel.be”
Steps are:

• Download nxpanel.be from here: GitHub - peepshow-21/ns-flash

• Select: Code

• Select: Download ZIP

• You will down download a file called “ns-flash-master.zip”

• Extract the file “ns-flash-master.zip\ns-flash-master\berry\nxpanel.be” from this zip and put

it in a directory. (there might be other ways to do this, but this is what I did...)

You are now ready to replace the panel definition file.

Installation and configuration
Next step is to install the new interface of NSPanel. Instead of using the “nspanel.be” file according

to the Tasmota installation instruction, use the “nxpanel.be” file (see "Download an OpenHAB

adopted “nxpanel.be”).

1. Browse to the IP-address of your NSPanel

2. The Tasmota web interface is now shown

3. Select: Consoles

4. Select: Manage File System

5. Select: Choose File

6. Browse to where you stored the file and Select: nxpanel.be

http://proto.systems/nxpanel/
https://github.com/peepshow-21/ns-flash/tree/master/berry
https://github.com/peepshow-21/ns-flash/tree/master/berry
https://github.com/peepshow-21/ns-flash

7

7. Select: edit-icon for nxpanel.be

8. Rename the file to: autoexec.be

9. Select: Save

10. Select: Consoles

11. Select: Main menu

12. Select: Restart

13. Select: Consoles

14. Select: Console

15. Type: InstallNxPanel

a. NSPanel now starts flashing the “nxpanel-latest.tft” downloaded from this site: Index of

/nxpanel (proto.systems), screen looks like this:

http://proto.systems/nxpanel/
http://proto.systems/nxpanel/

8

b. After restart, the panel now looks like this:

c. This is a good place to be! It’s now time to connect the NSPanel to OpenHAB.

Connecting NSPanel with OpenHAB
To facilitate the understanding how this is all connected see picture below. Details of how to

configure this will follow in the next sections. Legend:

• Blue: Configuration stuff

• Red: Execution flow

Enable logging!
Before you begin configuring the connection, I suggest you prepare logging so you can monitor

what’s happening. Three logs of interest are:

This is the IP of your OpenHAB box

This is the Port on which mosquitto
listens

This is the default username for mosquitto
(see chapter 3)

This is the password you set for mosquitto

This is not really the full Topic but a middle
 piece of the Topic. The %06X resolves to
7DD7FC (the 3 last octets of the MAC-
address). With %06X resolved, the Topic will
be: nspanel_7DD7FC

openhabian

192.168.3.10

mosquitto
broker

MQTT
broker thing

(bridge)

NSPanel1
(Generic MQTT Thing)

http://192.168.3.121/mq?

Login: username

Login: password

There are several prefixes:
• cmnd – Commands to NSPanel
• tele – Messages posted by NSPanel
• stat – Status messages posted by NSPanel

This is also not really the Full Topic but the beginning of the actual Topic
• cmnd/nspanel_7DD7FC – Commands to NSPanel
• tele/nspanel_7DD7FC – Messages posted by NSPanel
• stat/nspanel_7DD7FC – Status messages posted by NSPanel

These are examples of the real Full Topic
• cmnd/nspanel_7DD7FC/nxpanel – Commands to NSPanel
• cmnd/nspanel_7DD7FC/POWER –
• stat/nspanel_7DD7FC/RESULT – Status messages posted by NSPanel
• tele/nspanel_7DD7FC/STATE – State messages posted by NSPanel
• tele/nspanel_7DD7FC/SENSOR – Sensor readings posted by NSPanel
• tele/nspanel_7DD7FC/LWT – State posted by NSPanel
• tele/nspanel_7DD7FC/RESULT – Result messages posted by NSPanel

These are the Topics to use in your channels to communicate with NSPanel

The Topics can also be seen in the Tasmota Console

Username: openhabian

Password: mqttpwd22??

The Topics can also be seen in the Mosquitto log (/var/log/mosquitto/mosquitto.log)

Channel used to send

command to NSPanel

Channel used as trigger when

NSPanel sends somthing

Rule
NxPanel Page Refresh

1. You swipe left: Nspanel posts a message
on /tele/nspanel_7DD7FC/RESULT to take
action

2. Your rule picks up the
trigger event and executes
 a given script

3. The Groovy script builds a JSON
panel definition string and posts it
on the TOPIC cmnd/
nspanel_7DD7FC/nxpanel

Copy the Groovy
script as is but
make sure this
matches the
channel definition

4. Nothing really happens here,
it s just to show how the
configurations tie together

5. NSPanel picks up the JSON
and renders the panel

9

• The normal OpenHAB log (frontail) available here: http://<your-openhab-IP>:9001

• The mosquitto broker log will full logging enabled (see end of section “Fel! Hittar inte

referenskälla.” in Chapter Fel! Hittar inte referenskälla.). To look at the log:

o Log on your openhab with putty (or any other ssh client)

o Run the command: sudo tail -f /var/log/mosquitto/mosquitto.log

• The NSPanel Console log available here: http://<your-NSPanel-IP/cs?

o Select: Consoles

o Select: Console

o Enter command: weblog 4

o This turns on extended logging (to reset to normal, enter command: weblog 2)

Configure MQTT in NSPanel
This is where we configure the MQTT settings to start talking to the mosquito broker in OpenHAB.

1. Browse to the IP-address of your NSPanel

2. The Tasmota web interface is now shown

3. Select: Configuration

4. Select: Configure MQTT

5. Enter Host: <IP of your OpenHAB>

6. Enter Client: NSPANEL_%06X (don’t actually think this is used somewhere)

7. Enter User: openhabian (the default user for Mosquitto)

8. Tick the box to the left of Password

9. Enter Password: mqttpwd22?? (Must match the one you entered when installing Mosquitto)

10. Enter the Topic: nspanel_%06X (you can use anything, just make sure this matches everywhere)

11. When done the screen looks something like this:

12. Select: Save

13. After reboot, entries should now start to show in /var/log/mosquitto/mosquitto.log

14. This is good. Your NSPanel has successfully logged into your mosquito broker. But nothing will

happen as no one is listening in OpenHAB yet…

Configuring MQTT in OpenHAB
This is where we configure the MQTT settings in OpenHAB to be able to 1. Send commands to

NSPanel and 2. To listen what NSPanel is posting to us. We will also create a rule that uses the

template Groovy script from Mike just to get us started on getting our custom panels in place to

confirm communication back and forth is working.

In short, we will configure:

10

• A Generic MQTT thing representing our NSPanel

• Two channels for the above thing, one for receiving messages and one for sending

commands to the NSPanel.

• One rule that triggers on received messages from NSPanel and sends commands back

Steps are:

• Log on as admin in the OpenHAB web interface.

• Select: Settings

• To create the MQTT Thing for NSPanel

o Select: Things and press ”+”

o Select: MQTT Binding

o Select: Generic MQTT Thing

o Enter a Label: NSPanel1 (Generic MQTT Thing)

o Select Bridge: MQTT Broker

o Select: Save (top right corner)

• To create the two channels for the above thing, we start with the command channel:

o On the Things Menue, Select: NSPanel1 (Generic MQTT Thing)

o Select: Channels (top middle)

o Select: Add Channel

o As Channel Identifier; Enter: nxpanel_command

o As Label; Enter: NXPanel Command

o Select: Text Value

o Tick: Show Advanced

o As MQTT Command Topic; Enter: cmnd/nspanel_7DD7FC/nxpanel

o As QoS; Enter: Exactly Once

o Select: Save (at the bottom)

o After creation, the channel should look like this:

o To create the trigger channel for NSPanel1 (Generic MQTT Thing):

o Select: Channels (top middle)

o Select: Add Channel

o As Channel Identifier; Enter: nxpanel_trigger

o As Label; Enter: NXPanel Trigger

o Select: Trigger

o Tick: Show Advanced

o As MQTT Command Topic; Enter: tele/nspanel_7DD7FC/RESULT

11

o As QoS; Enter: Exactly Once

o Select: Save (at the bottom)

• Only the rule left to configure

o Select: Settings

o Select: Rules and press ”+”

o As Name Enter: NXPanel Trigger Rule

o Select: Add Trigger

o Select: Thing Event

o Select: NSPanel1 (Generic MQTT Thing)

o Select: A trigger channel fired

o Select: Done (top right)

o Select: Add Action

o Select: Run Script

o Select: Groovy (remember to have installed the Groovy Automation)

o Cut and Paste Mikes default Grovy script, you can either pick it from section “Mikes

Groovy script” below or from the community post

o Important! After adding the script code: Go to line 141 (the one that says “def TOPIC

= "cmnd/nxpanel/nxpanel") and replace the Topic with

“cmnd/nspanel_7DD7FC/nxpanel”. If you don’t, the script will post the response on

the wrong Topic.

o Select: Save (Ctrl-S) (top right corner).

• Done! Swipe left on Your NSPanel and Mikes test panel should now be displayed, the first

panel looks like this:

If this does not work, check your logs that the “topics” are all correctly matched. You will most

probably have another topic compared with the one above as this is based on the MAC address on

my NSPanel.

How it works
This is about what is sent between OpenHaB and NSPanel and assumes you have a working

connection.

When you swipe left, the NSPanel posts the JSON in blue to OpenHAB.

2022-03-27 21:02:48.967 [INFO] [openhab.event.ChannelTriggeredEvent] -

mqtt:topic:mosquitto_sweden3:nspanel1:nxpanel_page_trigger triggered {"page": {"format": 6, "pid": 10,

"type": "sync"}}

2022-03-27 21:02:48.974 [INFO] [org.openhab.core.automation.nspanel] - Demo page rules called

2022-03-27 21:02:48.978 [INFO] [org.openhab.core.automation.nspanel] - updating page ... 10

2022-03-27 21:02:48.981 [INFO] [org.openhab.core.automation.nspanel] - main panel

2022-03-27 21:02:48.988 [INFO] [org.openhab.core.automation.nspanel] - rule done

The rule you created is triggered and the action for the rule is to run the Groovy script.

https://community.openhab.org/t/nxpanel-replacement-firmware-for-sonoff-nspanel/132869/2?page=4

12

The piece: “pid”: 10 (pid = Panel ID) tells the script to render the panel with ID 10. This panel

looks like this: .

The script posts the following JSON in response to NSPanel which renders the panel:

{"refresh":{"pid":10,"name":"Lounge",6buttons:[{"bid":1,"label":"Movie","type":1,"state":1,"ic

on":1},{"bid":2,"label":"Lounge","type":1,"state":0,"icon":1},{"bid":3,"label":"Hall","type":2

,"icon":6},{"bid":4,"label":"Bedroom","type":10,"next":11,"state":5,"icon":5},{"bid":5,"label"

:"Temp","type":10,"next":15,"state":9,"icon":9},{"bid":6,"label":"Light","type":3,"next":18,"s

tate":1,"icon":2},{"bid":7,"label":"Dimmer","type":4,"next":16,"state":0,"icon":3},{"bid":8,"l

abel":"Status","type":10,"next":19,"state":15,"icon":16}]}}

Or if formatted in a bit more readable form:

{

 "refresh":{

 "pid":10,

 "name":"Lounge",

 "6buttons":[

 {

 "bid":1,

 "label":"Movie",

 "type":1,

 "state":1,

 "icon":1

 },

 {

 "bid":2,

 "label":"Lounge",

 "type":1,

 "state":0,

 "icon":1

 },

 {

 "bid":3,

 "label":"Hall",

 "type":2,

 "icon":6

 },

 {

 "bid":4,

 "label":"Bedroom",

 "type":10,

 "next":11,

 "state":5,

 "icon":5

 },

 {

 "bid":5,

 "label":"Temp",

 "type":10,

 "next":15,

 "state":9,

 "icon":9

 },

 {

 "bid":6,

 "label":"Light",

13

 "type":3,

 "next":18,

 "state":1,

 "icon":2

 },

 {

 "bid":7,

 "label":"Dimmer",

 "type":4,

 "next":16,

 "state":0,

 "icon":3

 },

 {

 "bid":8,

 "label":"Status",

 "type":10,

 "next":19,

 "state":15,

 "icon":16

 }

]

 }

}

Update values on first screen
<still working on this>

Mikes Groovy script
import org.slf4j.LoggerFactory

def PAGE_HOME = 1

def PAGE_2_BUTTON = 2

def PAGE_3_BUTTON = 3

def PAGE_4_BUTTON = 4

def PAGE_6_BUTTON = 5

def PAGE_8_BUTTON = 6

def PAGE_DIMMER = 7

def PAGE_DIMMER_COLOR = 8

def PAGE_THERMOSTAT = 9

def PAGE_ALERT_1 = 10

def PAGE_ALERT_2 = 11

def PAGE_ALARM = 12

def PAGE_MEDIA = 13

def PAGE_PLAYLIST = 14

def PAGE_STATUS = 15

def BUTTON_UNUSED = 0

def BUTTON_TOGGLE = 1

def BUTTON_PUSH = 2

def BUTTON_DIMMER = 3

def BUTTON_DIMMER_COLOR = 4

def BUTTON_PAGE = 10

def ICON_BLANK = 0

def ICON_BULB = 1

def ICON_DIMMER = 2

def ICON_DIMMER_COLOR = 3

def ICON_VACUUM = 4

def ICON_BED = 5

def ICON_HOUSE = 6

def ICON_SOFA = 7

def ICON_BELL = 8

def ICON_HEAT = 9

def ICON_CURTAINS = 10

def ICON_MUSIC = 11

def ICON_BINARY = 12

def ICON_FAN = 13

14

def ICON_SWITCH = 14

def ICON_TALK = 15

def ICON_INFO = 16

def NONE = 0

def logger = LoggerFactory.getLogger("org.openhab.core.automation.nspanel")

def mqtt = actions.get("mqtt","mqtt:broker:mqtt_broker")

def str = event.getEvent()

logger.info("Demo page rules called")

if (str.indexOf('{"page":')!=0) {

 return

}

/*

 * Utility functions - start

 */

def makeButton(bid,label,type,icon=null,state=null,next=null) {

 var str = ""<<((bid==1)?"":",")

 str<<'{"bid":'<<bid<<',"label":"'<<label<<'","type":'<<type

 if (next!=null) {

 str<<',"next":'<<next

 }

 if (state!=null) {

 str<<',"state":'<<state

 }

 if (icon!=null) {

 str<<',"icon":'<<icon

 }

 str<<'}'

 return str

}

def makePage(pid,name) {

 var str = new StringBuilder('{"refresh":')

 str<<'{"pid":'<<pid<<',"name":"'<<name<<'",'

 return str

}

def makeEmptySync(pid) {

 var str = new StringBuilder('{"sync":')

 str<<'{"pid":'<<pid<<'}}'

 return str

}

def makeEmptyRefresh(pid) {

 var str = new StringBuilder('{"refresh":')

 str<<'{"pid":'<<pid<<'}}'

 return str

}

def makeSyncButtonStart(pid,bid,state) {

 var str = new StringBuilder('{"sync":')

 str<<'{"pid":'<<pid

 str<<',buttons:[{"bid":'<<bid<<',"state":'<<state<<'}'

 return str

}

def addSyncButton(bid,state) {

 var str = ',{"bid":'<<bid<<',"state":'<<state<<'}'

 return str

}

/*

 * Utility functions - end

 */

15

/*

 * Get data from the page message

 * (would be good to use JsonSluper here but currently can't access)

 */

var i = str.indexOf("\"pid\"")

var i2 = str.indexOf(",",i+7)

var id = str.substring(i+7,i2)

i = str.indexOf("\"format\"")

i2 = str.indexOf(",",i+10)

var format = str.substring(i+10,i2)

// check if a full refresh or just a status update

var refresh = str.indexOf("refresh")>0

var json

def PANEL_MAIN = 10

def PANEL_BEDROOM_1 = 11

def PANEL_BEDROOM_2 = 12

def PANEL_LOUNGE = 13

def PANEL_CABIN = 14

def PANEL_CABIN_THERMO = 15

def PANEL_CABIN_LIGHTS = 16

def PANEL_LOUNGE_FAN = 17

def PANEL_LOUNGE_LIGHT = 18

def PANEL_STATUS = 19

def PANEL_MUSIC = 20

def TOPIC = "cmnd/nspanel/nxpanel"

logger.info("updating page ... "+id)

switch (id as int) {

 case PANEL_MAIN :

 logger.info("main panel")

 // set these from your own items

 movie_state = 1

 lounge_state = 0

 cabin_state = 0

 hall_light_state = 1

 if (refresh) {

 json = makePage(id,'Lounge')

 json<<format<<'buttons:['

 json<<makeButton(1,"Movie",BUTTON_TOGGLE,ICON_BULB,movie_state)

 json<<makeButton(2,"Lounge",BUTTON_TOGGLE,ICON_BULB,lounge_state)

 json<<makeButton(3,"Hall",BUTTON_PUSH,ICON_HOUSE)

 json<<makeButton(4,"Bedroom",BUTTON_PAGE,ICON_BED,PAGE_6_BUTTON,PANEL_BEDROOM_1)

 json<<makeButton(5,"Temp",BUTTON_PAGE,ICON_HEAT,PAGE_THERMOSTAT,PANEL_CABIN_THERMO)

json<<makeButton(6,"Light",BUTTON_DIMMER,ICON_DIMMER,hall_light_state,PANEL_LOUNGE_LIGHT)

json<<makeButton(7,"Dimmer",BUTTON_DIMMER_COLOR,ICON_DIMMER_COLOR,cabin_state,PANEL_CABIN_LIGH

TS)

 json<<makeButton(8,"Status",BUTTON_PAGE,ICON_INFO,PAGE_STATUS,PANEL_STATUS)

 json<<"]}}"

 } else {

 json = makeSyncButtonStart(id,1,movie_state)

 json<<addSyncButton(2,lounge_state)

 json<<"]}}"

 }

 mqtt.publishMQTT(TOPIC, json.toString())

 break

 case PANEL_BEDROOM_1 :

 // set these from your own items

 fan_state = 1

 if (refresh) {

 json = makePage(id,'Bedroom 1')

 json<<format<<'buttons:['

16

 json<<makeButton(1,"A",BUTTON_PUSH,ICON_HOUSE)

 json<<makeButton(2,"Fan",BUTTON_DIMMER,ICON_FAN,fan_state,PANEL_LOUNGE_FAN)

 json<<makeButton(3,"C",BUTTON_PUSH,ICON_SOFA)

 json<<makeButton(4,"Music",BUTTON_PAGE,ICON_MUSIC,PAGE_MEDIA,PANEL_MUSIC)

 json<<makeButton(5,"D",BUTTON_PUSH,ICON_TALK)

 json<<makeButton(6,"Alarm",BUTTON_PAGE,ICON_BELL,PAGE_ALARM,NONE)

 json<<"]}}"

 } else {

 json = makeEmptySync(id)

 }

 mqtt.publishMQTT(TOPIC, json.toString())

 break

 case PANEL_BEDROOM_2 :

 json = makeEmptySync(id)

 mqtt.publishMQTT(TOPIC, json.toString())

 break

 case PANEL_LOUNGE :

 json = makeEmptySync(id)

 mqtt.publishMQTT(TOPIC, json.toString())

 break

 case PANEL_CABIN :

 json = makePage(id,'Cabin')

 json<<"}}"

 mqtt.publishMQTT(TOPIC, json.toString())

 break

 case PANEL_CABIN_THERMO :

 // set these from your own items

 var heater = 1

 var auto = 0

 var temp = 15

 var set = 21

 json = makePage(id,'Cabin')

 json<<format<<',"therm":{'

 json<<'"set":'<<set<<',"temp":'<<temp<<',"heat":'<<heater<<',"state":'<<auto<<'"'

 json<<"}}"

 mqtt.publishMQTT(TOPIC, json.toString())

 break

 case PANEL_CABIN_LIGHTS :

 json = makePage(id,'Cabin Lights')

 json<<'"power":'<<ON<<',"hsbcolor":'<<'"10,100,50"'

 json<<"}}"

 mqtt.publishMQTT(TOPIC, json.toString())

 break

 case PANEL_LOUNGE_FAN :

 // set these from your own items

 fan_state = ON

 fan_setting = 3

 json = makePage(id,'Lounge Fan')

json<<'"power":'<<fan_state<<',"min":'<<1<<',"max":'<<4<<',"icon":'<<ICON_FAN<<',"dimmer":'<<f

an_setting

 json<<"}}"

 mqtt.publishMQTT(TOPIC, json.toString())

 break

 case PANEL_LOUNGE_LIGHT :

 json = makePage(id,'Lounge Light')

 json<<'"power":'<<ON<<',"dimmer":'<<30

 json<<"}}"

 mqtt.publishMQTT(TOPIC, json.toString())

 break

 case PANEL_STATUS :

 json = makePage(id,'System Status')

 json<<'"status":['

 json<<'{"id":'<<1<<',"text":'<<'"Gate":'<<',"value":'<<'"Open"'<<',"color":'<<2<<'}'

 json<<','

 json<<'{"id":'<<2<<',"text":'<<'"Window":'<<',"value":'<<',"Shut"'<<',"color":'<<3<<'}'

 json<<','

 json<<'{"id":'<<5<<',"text":'<<'"Room Temp":'<<',"value":'<<',"20°C"'<<'}'

 json<<']}}'

 mqtt.publishMQTT(TOPIC, json.toString())

 break

17

 case PANEL_MUSIC :

 json = makePage(id,'Sonos Player')

 // set these from your own items

 json<<'"artist":'<<'"New Order"'<<',"album":'<<'"Movement"'<<',"track":'<<'"Power

Play"'<<',"volume":'<<70

 json<<"}}"

 mqtt.publishMQTT(TOPIC, json.toString())

 break

 default :

 logger.info("unknown page!")

 break

}

logger.info("rule done")

18

7. Custom panel configuration
<still working on this>

